
宜昌催化燃燒設備 voc廢氣處理設備蓄熱式催化燃燒設備常見事故分析詞條還舉例介紹了HC型系列有機氣體催化燃燒裝置和LF-VC型直接催化分解氧化裝置,以及催化燃燒裝置使用中的不安全因素以及管理措施。廢氣催化燃燒處理設備原理圖,在催化劑作用下燃燒。與直接燃燒相比,催化燃燒溫度較低,燃燒比較完全。催化燃燒所用的催化劑為具有大比表面的貴金屬和金屬氧化物多組分物質。例如家用負載Pd或稀土化合物的催化燃氣灶,可減少尾氣中CO含量,提高熱效率。負載0.2%pt的氧化鋁催化劑,在500℃下,可將大多數有機化合物燃燒,脫臭凈化到化學位移σ=1以下。
宜昌催化燃燒設備 voc廢氣處理設備像這種催化燃燒設備一般的脫附時間為3-5天就必須脫附一次,這樣就很大的浪費電量。增加使用費用,而且活性炭的使用壽命短,好的活性炭一般2-3年更換一次,像這種需要經常需要脫附的催化燃燒設備的活性炭基本一年就需要更換一次。
宜昌催化燃燒設備 voc廢氣處理設備光催化是指在光的作用下進行的化學反應。光化學反應需要分子吸收特定波長的電磁輻射,受激產生分子激發態,繼而發生化學反應生成新的物質或變成引發熱反應的中間化學產物。光催化劑是指在光的照射下,自身不起變化,卻可以促進化學反應的物質。它利用光能轉化成化學反應所需的能量,產生催化作用,使周圍的氧氣及水分子激發成很具氧化力的自由基或負離子。
光催化氧化分為均相光催化氧化和非均相光催化氧化。均相光催化氧化主要為UV/Fenton試劑法。Fenton試劑為Fe2+和H2O2的組合,其氧化機理為Fe2++H2O2→˙OH+OH-+Fe3+Fe3++H2O2→Fe2++˙HO2+H+,因此Fenton試劑在水處理中具有氧化和混凝兩種作用,在黑暗中就能降解有機物,節省了設備投資,然而H2O2利用率不高,不能充分礦化有機物。當有光輻射(如紫外光)時,Fenton試劑氧化性顯著提高。UV/Fenton法也叫光助Fenton法,是普通Fenton法與UV/H2O2兩種系統的復合產物,降低Fe2+用量的同時保持H2O2較高的利用率,而UV和Fe2+對H2O2的催化分解存在協同效應,˙OH的生成速率遠大于傳統Fenton法和紫外催化分解H2O2速率的簡單加和。因此UV/Fenton試劑法在處理難降解有機污染物時具有獨特的優勢,很有應用前景。
非均相光催化氧化技術主要為TiO2光催化氧化技術。自從日本學者Fujishima和Honda于1972年在半導體TiO2電極上發現了水的光催化分解作用,開辟了半導體光催化這一新領域。1977年,Yokota等發現TiO2在光照條件下對丙烯環氧化具有光催化活性,從而拓寬了光催化的應用范圍,為有機物氧化反應提供了一條新的思路。此后世界范圍內便開始了光催化氧化技術在污水處理、空氣凈化、抗菌殺毒、有機合成等方面的應用研究,半導體光催化技術受到全世界的廣泛關注,并獲得了快速發展,成為國際上做活躍的研究領域之一。
宜昌催化燃燒設備 voc廢氣處理設備不同類型有機物的光催化降解
半導體光催化劑大多是n型半導體材料(當前以TiO2使用很廣泛),具有區別于金屬或絕緣物質的特別的能帶結構,即在價帶和導帶之間存在一個禁帶。由于半導體的光吸收閾值與帶隙具有公式K=1240/Eg(eV)的關系,因此常用的寬帶隙半導體的吸收波長閾值大都在紫外區域。在光照下,如果光子的能量大于半導體禁帶寬度,其價帶上的電子(e-)就會被激發到導帶上,同時在價帶上產生空穴(h+)。當存在合適的俘獲劑、表面缺陷或者其他因素時,電子和空穴的復合得以抑制,就會在催化劑表面發生氧化—還原反應。價帶空穴是良好的氧化劑,導帶電子是良好的還原劑,在半導體光催化反應中,一般與表面吸附的H2O、O2反應生成˙OH和超氧離子O2-,能夠把各種有機物直接氧化成CO2、H2O等無機小分子,電子也具有強還原性,可以還原吸附在其表面的物質。激發態的導帶電子和價帶空穴能重新合并,并產生熱能或其他形式散發掉。